Advance Search
Yu Y,Ran GP,Pi LM. Nitrogen sensing and root development in plants[J]. Plant Science Journal,2024,42(6):825−832. DOI: 10.11913/PSJ.2095-0837.24026
Citation: Yu Y,Ran GP,Pi LM. Nitrogen sensing and root development in plants[J]. Plant Science Journal,2024,42(6):825−832. DOI: 10.11913/PSJ.2095-0837.24026

Nitrogen sensing and root development in plants

More Information
  • Received Date: January 28, 2024
  • Accepted Date: March 17, 2024
  • Available Online: April 16, 2024
  • Nitrogen is a major component of living organisms and an essential nutrient for plant growth. To adapt to changes in nitrogen availability in the soil, plants employ complex signaling pathways to finely regulate root system architecture to optimize nitrogen uptake efficiency. This review focuses on the receptors involved in perceiving nitrogen signals in plant roots and the specific mechanisms governing root development. It also elaborates on the interplay between nitrogen signaling pathways, plant hormones, and other molecules that coordinately regulate root growth and development. This review aims to provide valuable insight into how plant roots perceive and respond to nitrogen signals.

  • [1]
    Xuan W,Beeckman T,Xu GH. Plant nitrogen nutrition:sensing and signaling[J]. Curr Opin Plant Biol,2017,39:57−65. doi: 10.1016/j.pbi.2017.05.010
    [2]
    Gruber BD,Giehl RFH,Friedel S,von Wirén N. Plasticity of the Arabidopsis root system under nutrient deficiencies[J]. Plant Physiol,2013,163(1):161−179. doi: 10.1104/pp.113.218453
    [3]
    Zhang HM,Jennings A,Barlow PW,Forde BG. Dual pathways for regulation of root branching by nitrate[J]. Proc Natl Acad Sci USA,1999,96(11):6529−6534. doi: 10.1073/pnas.96.11.6529
    [4]
    Shen TC. The induction of nitrate reductase and the preferential assimilation of ammonium in germinating rice seedlings[J]. Plant Physiol,1969,44(11):1650−1655. doi: 10.1104/pp.44.11.1650
    [5]
    Crawford NM,Glass ADM. Molecular and physiological aspects of nitrate uptake in plants[J]. Trends Plant Sci,1998,3(10):389−395. doi: 10.1016/S1360-1385(98)01311-9
    [6]
    Forde BG. Nitrate transporters in plants:structure,function and regulation[J]. Biochim Biophys Acta,2000,1465(1-2):219−235. doi: 10.1016/S0005-2736(00)00140-1
    [7]
    Miller AJ,Fan X,Orsel M,Smith SJ,Wells DM. Nitrate transport and signalling[J]. J Exp Bot,2007,58(9):2297−2306. doi: 10.1093/jxb/erm066
    [8]
    Krapp A,David LC,Chardin C,Girin T,Marmagne A,et al. Nitrate transport and signalling in Arabidopsis[J]. J Exp Bot,2014,65(3):789−798. doi: 10.1093/jxb/eru001
    [9]
    Ho CH,Lin SH,Hu HC,Tsay YF. CHL1 functions as a nitrate sensor in plants[J]. Cell,2009,138(6):1184−1194. doi: 10.1016/j.cell.2009.07.004
    [10]
    Li YG,Ouyang J,Wang YY,Hu R,Xia KF,et al. Disruption of the rice nitrate transporter OsNPF2.2 hinders root-to-shoot nitrate transport and vascular development[J]. Sci Rep,2015,5:9635. doi: 10.1038/srep09635
    [11]
    Xia XD,Fan XR,Wei J,Feng HM,Qu HY,et al. Rice nitrate transporter OsNPF2.4 functions in low-affinity acquisition and long-distance transport[J]. J Exp Bot,2015,66(1):317−331. doi: 10.1093/jxb/eru425
    [12]
    Hu B,Wang W,Ou SJ,Tang JY,Li H, et al. Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies[J]. Nat Genet,2015,47(7):834−838.
    [13]
    Feng HM,Yan M,Fan XR,Li BZ,Shen QR,et al. Spatial expression and regulation of rice high-affinity nitrate transporters by nitrogen and carbon status[J]. J Exp Bot,2011,62(7):2319−2332. doi: 10.1093/jxb/erq403
    [14]
    Liu Y,von Wirén N. Ammonium as a signal for physiological and morphological responses in plants[J]. J Exp Bot,2017,68(10):2581−2592. doi: 10.1093/jxb/erx086
    [15]
    Sonoda Y,Ikeda A,Saiki S,Yamaya T,Yamaguchi J. Feedback regulation of the ammonium transporter gene family AMT1 by glutamine in rice[J]. Plant Cell Physiol,2003,44(12):1396−1402. doi: 10.1093/pcp/pcg169
    [16]
    Fan XR,Naz M,Fan XR,Xuan W,Miller AJ,Xu GH. Plant nitrate transporters:from gene function to application[J]. J Exp Bot,2017,68(10):2463−2475. doi: 10.1093/jxb/erx011
    [17]
    Li GW,Tillard P,Gojon A,Christophe M. Dual regulation of root hydraulic conductivity and plasma membrane aquaporins by plant nitrate accumulation and high-affinity nitrate transporter NRT2.1[J]. Plant Cell Physiol,2016,57(4):733−742. doi: 10.1093/pcp/pcw022
    [18]
    Han YL,Song HX,Liao Q,Yu Y,Jian SF,et al. Nitrogen use efficiency is mediated by vacuolar nitrate sequestration capacity in roots of Brassica napus[J]. Plant Physiol,2016,170(3):1684−1698. doi: 10.1104/pp.15.01377
    [19]
    Von Wittgenstein NJ,Le CH,Hawkins BJ,Ehlting J. Evolutionary classification of ammonium,nitrate,and peptide transporters in land plants[J]. BMC Evol Biol,2014,14:11. doi: 10.1186/1471-2148-14-11
    [20]
    Ohkubo Y,Tanaka M,Tabata R,Ogawa-Ohnishi M,Matsubayashi Y. Shoot-to-root mobile polypeptides involved in systemic regulation of nitrogen acquisition[J]. Nat Plants,2017,3:17029. doi: 10.1038/nplants.2017.29
    [21]
    Kotur Z,Mackenzie N,Ramesh S,Tyerman SD,Kaiser BN,Glass ADM. Nitrate transport capacity of the Arabidopsis thaliana NRT2 family members and their interactions with AtNAR2.1[J]. New Phytol,2012,194(3):724−731. doi: 10.1111/j.1469-8137.2012.04094.x
    [22]
    Lezhneva L,Kiba T,Feria-Bourrellier AB,Lafouge F,Boutet-Mercey S,et al. The Arabidopsis nitrate transporter NRT2.5 plays a role in nitrate acquisition and remobilization in nitrogen-starved plants[J]. Plant J,2014,80(2):230−241. doi: 10.1111/tpj.12626
    [23]
    Yuan LX,Loqué D,Kojima S,Rauch S,Ishiyama K,et al. The organization of high-affinity ammonium uptake in Arabidopsis roots depends on the spatial arrangement and biochemical properties of AMT1-type transporters[J]. Plant Cell,2007,19(8):2636−2652. doi: 10.1105/tpc.107.052134
    [24]
    Hu R,Qiu DY,Chen Y,Miller AJ,Fan XR, et al. Knock-down of a tonoplast localized low-affinity nitrate transporter OsNPF7. 2 affects rice growth under high nitrate supply[J]. Front Plant Sci,2016,7:1529.
    [25]
    冯慧敏,陆宏,王汉卿,李昕玥. 水稻硝酸盐转运蛋白基因OsNPF7. 9在氮素积累和转运中的功能研究[J]. 中国水稻科学,2017,31(5):457−464.

    Feng HM,Lu H,Wang HQ,Li XY. Function analyses of rice nitrate transporter gene OsNPF7.9 in nitrogen accumulation and transport[J]. Chinese Journal of Rice Science,2017,31(5):457−464.
    [26]
    Léran S,Varala K,Boyer JC,Chiurazzi M,Crawford N,et al. A unified nomenclature of NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family members in plants[J]. Trends Plant Sci,2014,19:5−9. doi: 10.1016/j.tplants.2013.08.008
    [27]
    Li C,Tang Z,Wei J,Qu HY,Xie YJ,Xu GH. The OsAMT1.1 gene functions in ammonium uptake and ammonium-potassium homeostasis over low and high ammonium concentration ranges[J]. J Genet Genomics,2016,43(11):639−649.
    [28]
    Suenaga A,Moriya K,Sonoda Y,Ikeda A,von Wirén N,et al. Constitutive expression of a novel-type ammonium transporter OsAMT2 in rice plants[J]. Plant Cell Physiol,2003,44(2):206−211. doi: 10.1093/pcp/pcg017
    [29]
    Xing JP,Cao XC,Zhang MC,Wei X,Zhang J,Wan XY. Plant nitrogen availability and crosstalk with phytohormones signallings and their biotechnology breeding application in crops[J]. Plant Biotechnol J,2023,21(7):1320−1342. doi: 10.1111/pbi.13971
    [30]
    Avery GS,Burkholder PR,Creighton HB. Nutrient deficiencies and growth hormone concentration in helianthus and nicotiana[J]. Am J Bot,1937,24(8):553−557. doi: 10.1002/j.1537-2197.1937.tb09146.x
    [31]
    Ma WY,Li JJ,Qu BY,He X,Zhao XQ,et al. Auxin biosynthetic gene TAR2 is involved in low nitrogen-mediated reprogramming of root architecture in Arabidopsis[J]. Plant J,2014,78(1):70−79. doi: 10.1111/tpj.12448
    [32]
    Jia ZT,Giehl RFH,von Wirén N. Local auxin biosynthesis acts downstream of brassinosteroids to trigger root foraging for nitrogen[J]. Nat Commun,2021,12(1):5437. doi: 10.1038/s41467-021-25250-x
    [33]
    Shao A,Ma WY,Zhao XQ,Hu MY,He X, et al. The auxin biosynthetic TRYPTOPHAN AMINOTRANSFERASE RELATED TaTAR2.1-3A increases grain yield of wheat[J]. Plant Physiol,2017,174(4):2274−2288.
    [34]
    Sun HW,Bi Y,Tao JY,Huang SJ,Hou MM,et al. Strigolactones are required for nitric oxide to induce root elongation in response to nitrogen and phosphate deficiencies in rice[J]. Plant Cell Environ,2016,39(7):1473−1484. doi: 10.1111/pce.12709
    [35]
    Caba JM,Centeno ML,Fernández B,Gresshoff PM,Ligero F. Inoculation and nitrate alter phytohormone levels in soybean roots:differences between a supernodulating mutant and the wild type[J]. Planta,2000,211(1):98−104. doi: 10.1007/s004250000265
    [36]
    Krouk G,Lacombe B,Bielach A,Perrine-Walker F,Malinska K,et al. Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants[J]. Dev Cell,2010,18(6):927−937. doi: 10.1016/j.devcel.2010.05.008
    [37]
    Yu P,Eggert K,von Wirén N,Li CJ,Hochholdinger F. Cell type-specific gene expression analyses by RNA sequencing reveal local high nitrate-triggered lateral root initiation in shoot-borne roots of maize by modulating auxin-related cell cycle regulation[J]. Plant Physiol,2015,169(1):690−704. doi: 10.1104/pp.15.00888
    [38]
    Sun HW,Tao JY,Bi Y,Hou MM,Lou JJ, et al. OsPIN1b is involved in rice seminal root elongation by regulating root apical meristem activity in response to low nitrogen and phosphate[J]. Sci Rep,2018,8(1):13014.
    [39]
    Wang Q,Zhu YC,Zou X,Li FF,Zhang JL,et al. Nitrogen deficiency-induced decrease in cytokinins content promotes rice seminal root growth by promoting root meristem cell proliferation and cell elongation[J]. Cells,2020,9(4):916. doi: 10.3390/cells9040916
    [40]
    Ko D,Kang J,Kiba T,Park J,Kojima M, et al. Arabidopsis ABCG14 is essential for the root-to-shoot translocation of cytokinin[J]. Proc Natl Acad Sci USA,2014,111(19):7150−7155.
    [41]
    Poitout A,Crabos A,Petřík I,Novák O,Krouk G,et al. Responses to systemic nitrogen signaling in Arabidopsis roots involve trans-zeatin in shoots[J]. Plant Cell,2018,30(6):1243−1257. doi: 10.1105/tpc.18.00011
    [42]
    Zhang KW,Novak O,Wei ZY,Gou MY,Zhang XB, et al. Arabidopsis ABCG14 protein controls the acropetal translocation of root-synthesized cytokinins[J]. Nat Commun,2014,5:3274.
    [43]
    Signora L,de Smet I,Foyer CH,Zhang HM. ABA plays a central role in mediating the regulatory effects of nitrate on root branching in Arabidopsis[J]. Plant J,2001,28(6):655−662. doi: 10.1046/j.1365-313x.2001.01185.x
    [44]
    Ondzighi-Assoume CA,Chakraborty S,Harris JM. Environmental nitrate stimulates abscisic acid accumulation in Arabidopsis root tips by releasing it from inactive stores[J]. Plant Cell,2016,28(3):729−745. doi: 10.1105/tpc.15.00946
    [45]
    Wang M,Zhang PL,Liu Q,Li GJ,Di DW,et al. TaANR1-TaBG1 and TaWabi5-TaNRT2s/NARs link ABA metabolism and nitrate acquisition in wheat roots[J]. Plant Physiol,2020,182(3):1440−1453. doi: 10.1104/pp.19.01482
    [46]
    Wang YB,Yao QQ,Zhang YS,Zhang YX,Xing JP,et al. The role of gibberellins in regulation of nitrogen uptake and physiological traits in maize responding to nitrogen availability[J]. Int J Mol Sci,2020,21(5):1824. doi: 10.3390/ijms21051824
    [47]
    Zheng DC,Han X,An Y,Guo HW,Xia XL,Yin WL. The nitrate transporter NRT2.1 functions in the ethylene response to nitrate deficiency in Arabidopsis[J]. Plant Cell Environ,2013,36(7):1328−1337. doi: 10.1111/pce.12062
    [48]
    Lokdarshi A,Conner WC,McClintock C,Li T,Roberts DM. Arabidopsis CML38,a calcium sensor that localizes to ribonucleoprotein complexes under hypoxia stress[J]. Plant Physiol,2016,170(2):1046−1059. doi: 10.1104/pp.15.01407
    [49]
    Song XY,Li JF,Lyu M,Kong XZ,Hu S,et al. CALMODULIN-LIKE-38 and PEP1 RECEPTOR 2 integrate nitrate and brassinosteroid signals to regulate root growth[J]. Plant Physiol,2021,187(3):1779−1794. doi: 10.1093/plphys/kiab323
    [50]
    Conesa CM,Saez A,Navarro-Neila S,de Lorenzo L,Hunt AG,et al. Alternative polyadenylation and salicylic acid modulate root responses to low nitrogen availability[J]. Plants,2020,9(2):251. doi: 10.3390/plants9020251
    [51]
    Tegeder M,Rentsch D. Uptake and partitioning of amino acids and peptides[J]. Mol Plant,2010,3(6):997−1011. doi: 10.1093/mp/ssq047
    [52]
    Forde BG. Glutamate signalling in roots[J]. J Exp Bot,2014,65(3):779−787. doi: 10.1093/jxb/ert335
    [53]
    Walch-Liu P,Liu LH,Remans T,Tester M,Forde BG. Evidence that L-glutamate can act as an exogenous signal to modulate root growth and branching in Arabidopsis thaliana[J]. Plant Cell Physiol,2006,47(8):1045−1057. doi: 10.1093/pcp/pcj075
    [54]
    Taleski M,Chapman K,Novák O,Schmülling T,Frank M,Djordjevic MA. CEP peptide and cytokinin pathways converge on CEPD glutaredoxins to inhibit root growth[J]. Nat Commun,2023,14(1):1683. doi: 10.1038/s41467-023-37282-6
    [55]
    Taleski M,Imin N,Djordjevic MA. CEP peptide hormones:key players in orchestrating nitrogen-demand signalling,root nodulation,and lateral root development[J]. J Exp Bot,2018,69(8):1829−1836. doi: 10.1093/jxb/ery037
    [56]
    Araya T,Miyamoto M,Wibowo J,Suzuki A,Kojima S,et al. CLE-CLAVATA1 peptide-receptor signaling module regulates the expansion of plant root systems in a nitrogen-dependent manner[J]. Proc Natl Acad Sci USA,2014,111(5):2029−2034. doi: 10.1073/pnas.1319953111
    [57]
    Vidal EA,Araus V,Lu C,Parry G,Green PJ,et al. Nitrate-responsive miR393/AFB3 regulatory module controls root system architecture in Arabidopsis thaliana[J]. Proc Natl Acad Sci USA,2010,107(9):4477−4482. doi: 10.1073/pnas.0909571107
    [58]
    Puig J,Meynard D,Khong GN,Pauluzzi G,Guiderdoni E,Gantet P. Analysis of the expression of the AGL17-like clade of MADS-box transcription factors in rice[J]. Gene Expr Patterns,2013,13(5-6):160−170. doi: 10.1016/j.gep.2013.02.004
    [59]
    Yan YS,Wang HC,Hamera S,Chen XY,Fang RX. miR444a has multiple functions in the rice nitrate-signaling pathway[J]. Plant J,2014,78(1):44−55. doi: 10.1111/tpj.12446
    [60]
    Ma Q,Tang RJ,Zheng XJ,Wang SM,Luan S. The calcium sensor CBL7 modulates plant responses to low nitrate in Arabidopsis[J]. Biochem Biophys Res Commun,2015,468(1-2):59−65. doi: 10.1016/j.bbrc.2015.10.164
    [61]
    Han X,Wu K,Fu XD,Liu Q. Improving coordination of plant growth and nitrogen metabolism for sustainable agriculture[J]. aBIOTECH,2020,1(4):255−275. doi: 10.1007/s42994-020-00027-w
    [62]
    Fan XR,Tang Z,Tan YW,Zhang Y,Luo BB,et al. Overexpression of a pH-sensitive nitrate transporter in rice increases crop yields[J]. Proc Natl Acad Sci USA,2016,113(26):7118−7123. doi: 10.1073/pnas.1525184113
    [63]
    Rennenberg H,Wildhagen H,Ehlting B. Nitrogen nutrition of poplar trees[J]. Plant Biol,2010,12(2):275−291. doi: 10.1111/j.1438-8677.2009.00309.x
  • Related Articles

    [1]Liu Hongrui, Yan Baoxu, Zhao Yi, Yan Ruoyu, Jiang Kun. Advances in studies of ion channels and transporters involved in stomatal ABA signaling[J]. Plant Science Journal, 2024, 42(4): 543-554. DOI: 10.11913/PSJ.2095-0837.23277
    [2]Zheng Chuan, Yang Ying-Zeng, Luo Xiao-Feng, Dai Yu-Jia, Liu Wei-Guo, Yang Wen-Yu, Shu Kai. Current understanding of the roles of phytohormone abscisic acid in the regulation of plant root growth[J]. Plant Science Journal, 2019, 37(5): 690-698. DOI: 10.11913/PSJ.2095-0837.2019.50690
    [3]Sun De-Zhi, Han Xiao-Ri, Peng Jing, Fan Fu, Song Gui-Yun, Yang Heng-Shan. Effects of exogenous nitric oxide and salicylic acid on membrane peroxidation and the ascorbate-glutathione cycle in leaves of Lycopersicon esculentum seedlings under NaCl stress[J]. Plant Science Journal, 2018, 36(4): 612-622. DOI: 10.11913/PSJ.2095-0837.2018.40612
    [4]LI Kun, WANG Xian-Ping, YANG Feng-Bo, XU Shou-Ming. Roles of Mitogen-activated Protein Kinase Cascades in ABA Signaling Regulation of Plant Development[J]. Plant Science Journal, 2014, 32(5): 531-539. DOI: 10.11913/PSJ.2095-0837.2014.50531
    [5]SUN Xin, LEI Tao, YUAN Shu, LIN Hong-Hui. Progress in Research of Dehydrins[J]. Plant Science Journal, 2005, 23(3): 299-304.
    [6]ZHANG Yi-Lin, ZHAO Fan, ZHAO Jie. Effects of Exogenous ABA on the Seed Germination of Rice (Oryza sativa L.) and the Expression of Relative Genes[J]. Plant Science Journal, 2005, 23(3): 203-210.
    [7]LI Ke-Ying, LI Jia-Ru. The Effects of Salicylic Acid on Lateral Roots Formation in Rape Seedlings[J]. Plant Science Journal, 2004, 22(4): 345-348.
    [8]Zhao Bosheng, Mo Hua. DETOXICATION OF ASCORBIC ACID AND MOLYSITE ON THE ROOT GROWTH OF GARLIC UNDER CADMIUM POLLUTION[J]. Plant Science Journal, 1997, 15(2): 167-172.
    [9]Peng Yanhua, Liu Chengyun, Lu Dayan, Ye Wancheng. RESPONSE OF WATER HYACINTH LEAVES TO LOW TEMPERATURE STRESS——INCREASE IN ABSCISIC ACID AND SOLUBLE PROTEIN CONCENTRATIONS[J]. Plant Science Journal, 1992, 10(2): 123-127.
    [10]Peng Yanhua, Liu Chengyun. RECENT ADVANCES IN RELATION BETWEEN ABA AND EMBRYOGENESIS AND THE MODE OF ABA ACTION[J]. Plant Science Journal, 1991, 9(3): 289-292.

Catalog

    Article views (447) PDF downloads (105) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return